CHAPTER FIVE
DEMAND ESTIMATION

✧ Estimating demand for the firm’s product is an essential and continuing process. After all, decisions to enter new market, decisions concerning production, planning production capacity, and investment in fixed assets inventory plans as well as pricing and investment strategies are all depends on demand estimation.
✧ The estimated demand function provides managers with an accurate way to predict future demand for the firm’s product as well as set of elasticities that allow managers to know in advance the consequences of planned changes in prices, competitors’ prices, variations in consumers’ income, or the expected changes in any of the other factors affecting demand.
✧ This chapter will provide you with a simplified version of the simple and multiple regression analyses and techniques that belong to a field called “Econometrics”, which focuses on the use of statistical techniques and economic theories in dealing with economic problems.
✧ Managers may not need to estimate demand by themselves, especially in big firms. They may assign such technical tasks to their research department or hire outsider consulting firms (outsourcing) to do the job.
✧ However, a manager does need at least to have some basic knowledge of econometrics, to be able to read and understand reports.
✧ By the end of this chapter, you will be able to do simple demand estimation, or at least to be able to read and understand the computer printouts and reports presented to you.
✧ In the following pages, we will study regression analysis and how it can be used in demand estimation and how to find the coefficients of demand equation. The question is how these coefficients are estimated, or generally how demand is estimated.
Regression Analysis

✧ **Regression analysis** is a statistical technique for finding the best relationship between dependent variable and selected independent variable(s).

✧ **Dependent variable**: depends on the value of other variables. It is the primary interest to researchers.

✧ **Independent (explanatory) variable**: used to explain the variation in the dependent variable.

✧ Regression analysis is commonly used by economists to estimate demand for a good or service.

✧ There are two types of statistical analysis:

1. **Simple Regression Analysis**:
 The use of one independent variable
 \[Y = a + bX + \mu \]
 Where:
 - \(Y \): dependent variable, amount to be determined
 - \(a \): constant value; y-intercept
 - \(b \): slope (regression coefficients), or parameters to be estimated (it measures the impact of independent variable)
 - \(X \): independent (or explanatory) variable, used to explain the variation in the dependent variable
 - \(\mu \): random error

2. **Multiple Regression Analysis**:
 The use of more than one independent variable
 \[Y = a + b_1X_1 + b_2X_2 + \ldots + b_kX_k + \mu \]
 (\(k = \) number of independent variable in the regression model)

✧ The well-known method of **ordinary least squares (OLS)** is used in our regression analysis. Some of the assumptions of OLS include.

 1. Independent (explanatory) variables are independent from the dependent variable and independent from each other.
2. The error terms (µ) are independent and identically distributed normal random variables, with mean equal to zero.

How regression analysis is done?

There are certain steps to conduct reg. analysis.

1. Identify the relevant variables
2. Obtain data on the variables
3. Specify the regression model
4. Estimate the parameters (coefficients)
5. Interpret the results
6. Statistical evaluation of the results (testing statistical significance of model)
7. Use the results in decision making (forecasting using reg. results).

1. **Identification of variables and data collection:**
 ✷ Here, we try to answer the question of what variables to be included in regression analysis; what variables are important
 ✷ The role of economic theory, the availability of data and other constraints help in determining which variables to be included
 ✷ **The role of economic theory:**
 - In estimating the demand for a particular good or service, we have to determine all the factors that might influence this demand.
 - Economic theory helps by considering the right set of variables to be considered when estimating demand for the good. It also helps in determining the relationship between \(Q_d \) and these variables; e.g.; we expect a negative sign for the coefficient of \(P \) because of the negative relation between \(P \) and \(Q_d \). If the good under consideration is a normal good, we expect a positive sign the for the coefficient of income because of the positive relationship between income and the demand for normal good, etc…
In reality, however, the availability of data and the cost of generating new data may determine what to include.

- Some variables are easy to find and to measure and quantify, like prices, number of consumers and may be income …
- Sometimes it is difficult to get data for the original variables ⇒ use proxy
- Some variables are hard to quantify such as location (urban, suburban, rural) or tastes and preferences (like, dislike, indifferent, …) ⇒ use dummy (binary) variables (1 if the event occurs and zero otherwise. E.g., urban, 0 otherwise) or (1 if like, 0 otherwise).
- The main types of data used in regression are:
 1. Cross sectional: provide information about the variables for a given time period (different individuals, goods, firms, countries …)
 2. Time series: give information about variables over a number of periods of time (years, months, daily,…)
 3. Pooled (Panel): Combinations of cross section and time series data

- Data for studies pertaining to countries, regions, or industries are readily available and reliable.
- Data for analysis of specific product categories may be more difficult to obtain. The solution is to buy the data from data providers, perform a consumer survey, focus groups, etc.

2. Specification of the model:
- This is where the relation between the dependent variable (say, Q_d) and the factors affecting it (the independent or explanatory variables) are expressed in regression equation.
- The estimation of regression equation involves searching for the best linear relationship between variables.
The commonly used specification is to express the regression equation in the **additive linear function**.

If equation is non-linear such as **Multiplicative** such as \(Q = A P^b Y^c \), transform nonlinear into linear using logarithm.

It is **double log** (log is the natural log, also written as \(\ln \))

\[\log Q = a + b \log P + c \log Y \]

For the purpose of illustration, let us assume that we have obtained cross-sectional data on college students of 30 randomly selected college campuses during a particular month, with the following equation.

\[Q_d = a + b_1 P + b_2 T - b_3 P_c + b_4 L + \mu \]

Where:

- **Q_d**: Quantity demanded of pizza (average number of slices per capita per month)
- **P**: Average price of slice of pizza (in cents)
- **T**: Annual tuition as proxy for income (in thousands of $s)
- **P_c**: Price of cans of soft drinks (in cents)
- **L**: Location of campuses (1 if urban area, 0 otherwise)
- **a**: Constant value or Y intercept
- **b_i**: Coefficient of independent variables to be estimated (slope)
- **\(\mu \)**: Random error term standing for all other omitted variables.

The effect of each variable (the marginal impact) is the coefficient of that variable in the regression equation. The impact of P is \(b_1 (dQ/dP) \), the impact of T is \(b_2 (dQ/dT) \), etc…….

The elasticity of each variable is calculated as usual:

\[
\begin{align*}
E_d & = \frac{dQ}{dP} \times \frac{P}{Q} = b_1 \times \frac{P}{Q} \\
E_T & = \frac{dQ}{dT} \times \frac{T}{Q} = b_2 \times \frac{T}{Q} \\
E_{P_c} & = \frac{dQ}{dP_c} \times \frac{P_c}{Q} = b_3 \times \frac{P_c}{Q} \\
E_L & = \frac{dQ}{dL} \times \frac{L}{Q} = b_4 \times \frac{L}{Q}
\end{align*}
\]
3. **Estimation of the regression coefficients:**
 - Given this particular set up of regression equation we can now estimate the values of coefficients of the independent variable as well as the intercept term. Using **ordinary least squares (OLS) method**
 - Usually statistical and econometrics packages are used to estimate regression equation using excel and many other statistical packages such as SPSS, SAS, EViews, LimDep, TSP…
 - Results are usually reported in regression equation or table format, containing certain information such
 \[
 Q_d = 26.67 - 0.088P + 0.138T - 0.076P_c - 0.544L \\
 \quad (0.018) \quad (0.0087) \quad (0.020) \quad (0.884)
 \]
 \[R^2 = 0.717 \text{ (The coefficient of determination)}\]
 \[\bar{R}^2 = 0.67 \text{ (Adjusted } R^2)\]
 \[\text{SE of } Q \text{ estimate (SEE) } = 1.64\]
 \[F = 15.8 \text{ (F-Statistics)}\]
 Standard errors of the coefficient are listed in parentheses.

4. **Interpretation of the regression coefficients:**
 - Analyzing regression results involves the following steps
 - Checking the signs and magnitudes
 - Computing elasticity coefficients
 - Determining statistical significance
 - It also involves two tasks:
 - Interpretation of coefficients
 - Statistical evaluation of coefficients
 - **What are the expected magnitude and signs of the estimated coefficient?**
 - Check signs of the coefficient according to economic theory and see if they are as expected:
 - **P:** when price increases, \(Q_d\) for Pizza decreases (negative sign)
T: Sign for proxy of income depends on whether pizza is a normal or inferior good. (+,-)

Pc: expected sign for Pc is (-) because of complementary relation (Pc increases, demand for pizza decreases)

L: Expected sign is (-) because in urban areas students have varieties of restaurants (more substitutes), ⇒ they will consume less pizza than their counterparts in other areas will.

✧ Check the effect of each independent variable on the dependent variable according to economic theory.

✧ With regard to magnitude, we can see that each estimated coefficient tells us how much the demand for pizza will change relative to a unit change in each of the independent variables.

b₁: a unit change in P changes Qd by 0.088 units in the opposite direction.

b₂: for a $1000 change in tuition, demand changes by 0.138 units.

b₃: for a unit change in Pc, demand changes by 0.076 in opposite direction

b₄: students in urban areas will buy about half (0.544) less than those in other areas.

✧ Magnitude of regression coefficients is measured by elasticity of each variable.

If P=100 (cents), T=14($000), Pc=110 (cents), L= 1

\[Q_d = 26.67 - 0.088(100) + 0.138(14) - 0.076(110) - 0.544(1) = 10.898 \]

\[E_d = -0.088 \times \frac{100}{10.898} = -0.807 \text{ is somewhat inelastic} \]

\[E_T = 0.138 \times \frac{14}{10.898} = 0.177 \text{ no great impact} \]

\[E_{Pc} = -0.076 \times \frac{110}{10.898} = -0.767 \text{ is inelastic} \]

\[E_L = -0.544 \times \frac{1}{10.898} = -0.05 \text{ dose not really matter} \]
5. **Statistical evaluation of the regression results**

- Regression results are based on a sample.
- How confident are we that these results are truly reflective of population?
- The basic test of the statistical significance using each of the estimated regression coefficients is done separately using t-test.

t- Test

- **t-test** is conducted by computing t-value or t-statistic for each of the estimated coefficient, to test the impact of each variable separately.
- \[t = \frac{\hat{b}_i - b_i}{S_{b_i}} \]

 bi is assumed equal to zero in the null hypothesis \[\Rightarrow t = \frac{\hat{b}_i}{S_{b_i}} \]

- We usually compare the estimated (observed) t-value (\[t = \frac{\hat{b}_i}{S_{b_i}} \]) to the critical value from t-table, \[t_{\alpha, n-k-1} \]

 where:
 \[\alpha = \text{level of significance (it is an error rate of unusual samples with their false inference from a sample to a population)} \]
 \[n = \text{number of observations,} \]
 \[k = \text{number of independent/ explanatory variables.} \]
 \[n-k-1 = \text{degrees of freedom: the number of free or linearly independent sample observations used in the calculation of statistic.} \]

To compare estimated t-value to critical t-value.
First: form the hypotheses:

✧ **Null hypothesis,** H_0: $b_j = 0$

The null hypothesis means that there is no relationship between independent variable and dependent variable. i.e. the variable in question has no effect on dependent variable when other factors are held constant.

✧ **Alternative hypothesis,** H_a: $b_j \neq 0$

The alternative hypothesis means that there is linear relationship between independent variable and the dependent variable.

✧ Since there are two hypotheses, rejecting one implies the other is automatically accepted (not rejected)

Second: Calculate t-value (observed t-value) of all independent variables:

✧ In the pizza example:

\[
\begin{align*}
t_p &= -\frac{0.088}{0.018} = -4.89 \\
t_T &= \frac{0.138}{0.087} = 1.58 \\
t_{P_c} &= -\frac{0.076}{0.020} = -3.80 \\
t_L &= -\frac{0.544}{0.884} = -0.615
\end{align*}
\]

Third: Determine your level of significance (say 5%).

✧ Using the **rule of two**, we can say that estimated coefficient is statistically significant (has an impact on the dependent variable) if t-value is greater than or equal to 2.

✧ In the pizza example above

- P & P_c are greater than 2 \Rightarrow statically significant \Rightarrow the whole population has an effect on demand.
T& L are Less than 2 ⇒ statistically insignificant ⇒ the population as no effect on demand.

\[\alpha = 0.05, \quad n = 30, \quad k = 4 \]

\[t_{\alpha, n-k-1} = t_{0.05, 30-4-1} = t_{0.05, 25} = 2.060 \]

Fourth: Conclusion

- Compare absolute t-value with the critical t-value:
- If absolute t-value > critical t-value, reject \(H_0 \) and conclude that estimated coefficient is statistically significant, otherwise accept \(H_0 \).

<table>
<thead>
<tr>
<th>var.</th>
<th>t-value</th>
<th>critical</th>
<th>Decision</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4.889</td>
<td>> 2.060</td>
<td>reject</td>
<td>significant</td>
</tr>
<tr>
<td>T</td>
<td>1.683</td>
<td>< 2.060</td>
<td>don't reject</td>
<td>not significant</td>
</tr>
<tr>
<td>P_c</td>
<td>3.800</td>
<td>> 2.060</td>
<td>reject</td>
<td>significant</td>
</tr>
<tr>
<td>L</td>
<td>0.615</td>
<td>< 2.060</td>
<td>do not reject</td>
<td>not significant</td>
</tr>
</tbody>
</table>

- **Significant** means there is linear relationship between the independent and dependent variables. The independent variable has a true impact on the dependent variable or it is important in explaining variation in the dependent variable (\(Q_d \) in our example),
- **Not significant** means there is no linear relationship between the independent and dependent variables.
Testing the performance of the Regression Model – \(R^2 \)

- The overall results are tested using the coefficient of determinations, \(R^2 \).
- \(R^2 \) is to evaluate the deterministic power of the regression model.
- \(R^2 \) is used to test whether the regression model is good, i.e., to test the goodness of fit of the regression line to actual data.
- \(R^2 \) measures the percentage of total variation in the dependent variable that is explained by the variation in all of the independent variables in the regression model.

\[
R^2 = \frac{\text{TSS} - \text{ESS}}{\text{TSS}} = 1 - \frac{\text{ESS}}{\text{TSS}}
\]

Where,

- **TSS**: total sum of squares; it is the sum of squared total variation in the dependent variables around its mean (explained & unexplained)
- **RSS**: regression sum of square (explained variation)
- **ESS**: Error of square (unexplained variation)

\[0 < R^2 < 1\]

- \(R^2 = 0 \) ⇒ variation in the dependent variable cannot be explained at all by the variation in the independent variable.
- \(R^2 = 1 \) ⇒ all of the variation in the dependent variable can be explained by the independent variables
- For statistical analysis, the closer \(R^2 \) is to one, the better the regression equation; i.e., the greater the explanatory power of the regression equation.
- Low value of \(R^2 \) indicates the absence of some important variables from the model.
- In our example, \(R^2 = 0.717 \). This means that about 72% of the variation in the demand for pizza by college students can be explained by the variation in the independent variables.
- The value of \(R^2 \) is affected by:
 - The value of independent variables: the way \(R^2 \) is calculated causes its value to increase as more independent variables are
added to the regression model even if these variables do not have any effect on the dependent variable.

- Types of data used: other factors held constant, time series data generally produce a higher R^2 than cross-sectional data. This is because of series data has built-in trend over time to keep dependent and independent variables moving closely together. A good example of this is a time-series analysis of aggregate consumption regressed on aggregate disposable income. Regression analysis of this consumption function commonly produces R^2 of .95 and above.

Adjusted R^2, \bar{R}^2

(The adjusted coefficient of determination),

✧ As more and more variables are added, R^2 usually increases.

✧ Therefore, we use \bar{R}^2 to account for this "inflation" in R^2 so that equation with different numbers of independent variables can be more fairly compared

✧ In our example, $\bar{R}^2 = 0.67$ which indicates that about 67% of the variation in Q_d of pizza is explained by the variations in the independent variables while 33% of these variations are unexplained by the model.

✧ \bar{R}^2 is calculated as

\[
\bar{R}^2 = R^2 - \frac{k}{n-k-1} (1-R^2)
\]

\[
\bar{R}^2 = 0.72 - \frac{4}{25} (1 - 0.72) = 0.67
\]
F-test

- **F-test** is used to test the impact of overall explanatory power of the whole model, or the joint effect of all explanatory variables as a group. (i.e., testing the overall performance of the regression coefficients)
- **F-test** measures the statistical significance of the entire regression equation rather than of each individual coefficient as the t-test is designed to do.
- If it is used in simple regression (i.e., for a regression equation with only one independent variable), then in effect it provides the same test as the t-test for this particular variable.
- The F-test is much more useful when two or more independent variables are used.
- It can then test whether all of these variables taken together are statistically significant from zero, leaving the t-test to determine whether each variable taken separately is statistically significant.
- As in the t-test, we have to set our hypotheses.

First: form the hypotheses:

- **H_0: All $b_i = 0$** ($b_1= b_2 = b_3 =...= b_k = 0$)
 (k= number of independent variable in the regression model)
 There is no relation between the dependent variable and independent variables. The model cannot explain any of the variation in the dependent variable
- **H_a: at least one $b_i \neq 0$**
 A linear relation exists between dependent variable and at least one of the independent variables.
Second: Calculate F-value
✧ \(F = \frac{(\text{explained variation}/k)}{(\text{unexplained variation}/n-k-1)} \)
✧ \(F = \frac{\sum (\hat{y} - \bar{y})^2 / k}{\sum (y - \hat{y})^2 / n - k - 1} = \frac{\text{RSS}/k}{\text{ESS}/n-k-1} \)

\(\text{RSS}: \) regression sum of squares
\(\text{ESS}: \) error sum of squares
\(n: \) number of observation
\(k: \) number of explanatory variables
✧ But \(F \) maybe re-written in term of \(R^2 \) as follows
✧ \(F = \frac{R^2 / k}{(1-R^2) / n-k-1} \)
✧ In our example: \(F=15.8 \)
✧ The greater the value of F-statistics, the more confident the researcher would be that variables included in the model have together a significant effect on the dependent variable, and the model has a high explanatory power.
✧ Thus, the F test examines the significance of \(R^2 \)

Third: Determine your level of significance (say 5%)
✧ \(F_{\alpha, k, n-k-1} \)
 \(\alpha: \) level of significance
 \(k: \) number of independent variables
 \(n: \) number of observations or sample size
 \(k, n-k-1: \) degrees of freedom
✧ in our example: \(F_{0.05, 4, 30-4-1} = F_{0.05, 4, 25} = 2.76 \)

Fourth: Compare F-value (observed F) with critical F-value
✧ If \(F > \text{Critical F value} \) ⇒ reject \(H_0 \) and conclude that a linear relation exists between the dependent variable and at least one of the independent variable
F = 15.8 > F_{0.05, 4, 25} = 2.76

Reject H₀, there is a linear relationship between the dependent variable and at least one of the independent variables. The entire regression model accounts for a statistically significant proportion of the variation in the demand for pizza.

6. **Forecasting:**
 - Future values of demand can easily be predicted or forecasted by plugging values of independent variables in the demand equation.
 - Only we have to be confident at a given level that the true Y is close to the estimated Y.
 - Since we do not know the true Y, we can only say that it lies between a given confidence interval.
 - The interval is \(\hat{Y} \pm t_{a, n-k-1} \times SEE \)
 - Confidence interval tells that we are, say, 95% confident that the predicted value of \(Q_d \) lies approximately between the two limits.

Implications of Regression Analysis for Decision Making
- Regression analysis can show which are the important factors, judging from whether the variable is significant or not (what variables passed the t-test and what did not pass.)
- The magnitude and the level of coefficient indicate the importance of the variables.
- Computing elasticity will help in determining what may happen to total revenue.
Correlation

✈ A measure of association is the correlation coefficient, r.
✈ **Correlation coefficient**, r, indicates the strength and direction of a
 linear relationship between two random variables
✈ The correlation is defined only if both of the standard deviations are
 finite and both of them are nonzero
✈ If r = 0 the variables are independent
✈ If r = 1, the correlation is perfect and positive. This is the case of an
 increasing linear relationship
✈ If r = -1, the correlation is perfect and negative. This is the case of an
 decreasing linear relationship
✈ If the value is in between, it indicates the degree of linear dependence
 between the variables
✈ The closer the coefficient is to either -1 or 1, the stronger the correlation
 between the variable
✈ The **correlation coefficient** is defined in terms of the covariance:
 ✈ \[\text{corr}(X, Z) = \frac{\text{cov}(X, Z)}{\sqrt{\text{var}(X) \text{var}(Z)}} = \frac{\sigma_{XZ}}{\sigma_X \sigma_Z} \]
 ✈ \[-1 \leq \text{corr}(X, Z) \leq 1\]
 ✈ \(\text{corr}(X, Z) = 1\) mean perfect positive linear association
 ✈ \(\text{corr}(X, Z) = -1\) means perfect negative linear association
 ✈ \(\text{corr}(X, Z) = 0\) means no linear association

Association and Causation

✈ Regressions indicate **association**, but beware of jumping to the
 conclusion of **causation**
✈ Suppose you collect data on the number of swimmers at a beach and
 the temperature and find:

 Temperature = 61 + .04 Swimmers,

 and \(R^2 = .88\).
Surely the temperature and the number of swimmers is positively related, but we do not believe that more swimmers caused the temperature to rise.

Furthermore, there may be other factors that determine the relationship, for example the presence of rain, or whether or not it is a weekend or weekday.

Education may lead to more income, and also more income may lead to more education. The direction of causation is often unclear. But the association is very strong.
Regression Problems

Identification Problem:

✧ The identification problem refers to the difficulty of clearly identifying the demand equation because of the effects of both supply and demand that are often reflected in data used in the analysis.
✧ The estimation of demand may produce biased results due to simultaneous shifting of supply and demand curves.
✧ Advanced estimation techniques, such as two-stage least squares and indirect least squares, are used to correct this problem.

Multicollinearity

✧ Two or more independent variables are highly correlated, thus it is difficult to separate the effect each has on the dependent variable.
✧ Passing the F-test as a whole, but failing the t-test for each coefficient is a sign that multicollinearity exists.
✧ A standard remedy is to drop one of the closely related independent variables from the regression

Autocorrelation

✧ Also known as serial correlation, occurs when the dependent variable relates to the independent variable according to a certain pattern.
✧ Possible causes:
 o Effects on dependent variable exist that are not accounted for by the independent variables.
 o The relationship may be non-linear
✧ The Durbin-Watson (DW) statistic is used to identify the presence of autocorrelation.
✧ To correct autocorrelation consider:
 o Transforming the data into a different order of magnitude
 o Introducing leading or lagging data
APPENDIX

Using MS-Excel in Regression:

1. Open a new file in Excel program and name it example-1.

2. Label the first column on your file Q, the second P. Insert the following data collected by the research team in 1999.

<table>
<thead>
<tr>
<th>Observations</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meals</td>
<td>180</td>
<td>590</td>
<td>430</td>
<td>250</td>
<td>275</td>
<td>720</td>
<td>660</td>
<td>490</td>
<td>700</td>
<td>210</td>
</tr>
<tr>
<td>Price</td>
<td>475</td>
<td>400</td>
<td>450</td>
<td>550</td>
<td>575</td>
<td>375</td>
<td>375</td>
<td>450</td>
<td>400</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observations</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meals</td>
<td>150</td>
<td>120</td>
<td>500</td>
<td>150</td>
<td>600</td>
<td>220</td>
<td>200</td>
<td>280</td>
<td>160</td>
<td>300</td>
</tr>
<tr>
<td>Price</td>
<td>480</td>
<td>650</td>
<td>300</td>
<td>330</td>
<td>350</td>
<td>660</td>
<td>650</td>
<td>540</td>
<td>720</td>
<td>600</td>
</tr>
</tbody>
</table>

3. Open Tools in the menu bar, choose Data Analysis and move to number 4 below. If Data Analysis does not appear on the Tools menu, click “Add-Ins…”. on the Tools menu. In the Add-Ins window, choose “Analysis ToolPack” and press OK.
4. Now, open tools once again and click the new title “Data Analysis”, and click Regression in the Data Analysis window, then OK.

5. In the regression dialog box, For “Input Y range”, select the Q column of your data including the label cell. Move the cursor to “Input X range”, select the P column from your data. Check the square beside “labels”.

6. Click “Output Range”, and click a cell below your data where you like printing of the results to start.
7. Click OK. The results print out will look exactly as follows:

<table>
<thead>
<tr>
<th>SUMMARY OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression Statistics</td>
</tr>
<tr>
<td>Multiple R</td>
</tr>
<tr>
<td>R Square</td>
</tr>
<tr>
<td>Adjusted R Square</td>
</tr>
<tr>
<td>Standard Error</td>
</tr>
<tr>
<td>Observations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Regression</td>
</tr>
<tr>
<td>Residual</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>P</td>
</tr>
</tbody>
</table>

Excel Exercise

1. Use the data in your text page 169 to confirm the results presented in the text.
2. The following table contains data on the number of apartments rented (Q), the rental price (P) in BDs, the amount spent on advertisement (AD) in hundreds of BDs, and the distance between the apartments and the university (Dis) in miles.

<table>
<thead>
<tr>
<th>Q</th>
<th>28</th>
<th>69</th>
<th>43</th>
<th>32</th>
<th>42</th>
<th>72</th>
<th>66</th>
<th>49</th>
<th>70</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>250</td>
<td>400</td>
<td>450</td>
<td>550</td>
<td>575</td>
<td>375</td>
<td>375</td>
<td>450</td>
<td>400</td>
<td>375</td>
</tr>
<tr>
<td>AD</td>
<td>11</td>
<td>24</td>
<td>15</td>
<td>31</td>
<td>34</td>
<td>22</td>
<td>12</td>
<td>24</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>Dis</td>
<td>12</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

a. Use Excel program to regress Q on the three explanatory variables.
b. Write the estimated demand equation for apartments.