SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

1) Find the domain of the function: $f(t) = \frac{t^2 - t}{4}$

2) Find the domain of the function: $f(t) = \frac{t - 3}{t^2 + t - 2}$

3) Find the domain of the function: $f(x) = \frac{\sqrt{x - 1}}{x^2 - 9}$

4) Find the domain of the function: $f(x) = \sqrt{x - 11}$

5) Find the domain of the function: $f(q) = \sqrt{4 - 3q}$

6) If $f(x) = 5 - 8x$, find:
 (a) the domain
 (b) $f(1)$
 (c) $f(-2)$
 (d) $f\left(\frac{5}{8}\right)$
 (e) $f(t)$
 (f) $f(x + 2)$

7) Given the function $f(x) = x^2 + 4x + 2$, find:
 (a) the domain
 (b) $f(0)$
 (c) $f(3)$
 (d) $f(-2)$
 (e) $f(-1)^2$

8) If $f(x) = x^2 - 2x + 3$, find:
 (a) the domain
 (b) $f(2)$
 (c) $f(-2)$
 (d) $f\left(-\frac{1}{2}\right)$
 (e) $f(l^2)$
 (f) $f(s + 1)$
 (g) $f(x + h)$
9) If \(g(x) = \frac{x}{x - 4} \), find:

 (a) the domain
 (b) \(g(0) \)
 (c) \(g(-4) \)
 (d) \(g\left(\frac{1}{2}\right) \)
 (e) \(g(x^2) \)

10) If \(g(s) = \frac{3}{s - 2} - s \), find:

 (a) the domain
 (b) \(g(0) \)
 (c) \(g(3) \)
 (d) \(g(-4) \)
 (e) \(g\left(\frac{1}{s}\right) \)

11) Given the function \(F(t) = \sqrt{t + 3} \), find:

 (a) the domain
 (b) \(F(-3) \)
 (c) \(F(13) \)
 (d) \(f(t^2 + 1) \)

12) If \(f(x) = 3x - 1 \), find \(\frac{f(x + h) - f(x)}{h} \)

13) If \(f(x) = x^2 + 2x - 6 \), find \(\frac{f(x + h) - f(x)}{h} \)

14) If \(f(x) = 4 - x^2 \), find \(\frac{f(x + h) - f(x)}{h} \)

15) If \(f(x) = 4x^2 + 6x \), find \(f(3s) \).

16) If \(g(x) = \frac{x + 2}{x - 5} \), find \(g(x - 1) \)

17) True or False: If \(x + y^2 - 5 = 0 \), then \(x \) is a function of \(y \).

18) For the equation \(4y = x^2 \), (a) is \(y \) a function of \(x \)? (b) Is \(x \) a function of \(y \)?
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

19) The domain of \(f(x) = \frac{x^2 - 3x}{6} \) is
 A) all real numbers
 B) all real numbers except 6
 C) all real numbers except 0
 D) all real numbers except 0 and 3
 E) all real numbers except 0, 3, and 6

20) The domain of \(f(t) = \frac{2}{t - 4} \) is
 A) all real numbers
 B) all real numbers except 0
 C) all real numbers except 2
 D) all real numbers except 4
 E) all real numbers except 2 and 4

21) The domain of the function \(f(x) = \frac{\sqrt{x + 2}}{x^2 - 16} \) is
 A) all real numbers \(\geq 2 \)
 B) all real numbers \(\geq -2 \)
 C) all real numbers \(\geq -2 \) except 4
 D) all real numbers \(\geq 2 \) except 4
 E) all real numbers except 4 and -4

22) The domain of \(f(q) = \frac{q^2 - 1}{q^2 + 4} \) is
 A) all real numbers
 B) all real numbers except 1 and -1
 C) all real numbers except -4
 D) all real numbers except -2 and 2
 E) all real numbers except -1, 1, and -2

23) The domain of \(f(s) = \sqrt{9 - 5s} \) is all real numbers \(s \) such that
 A) \(s \geq \frac{9}{5} \)
 B) \(s \leq \frac{9}{5} \)
 C) \(s \geq \frac{5}{9} \)
 D) \(s \leq \frac{5}{9} \)
 E) \(s \geq -\frac{5}{9} \)

24) The domain of \(f(x) = \frac{1}{\sqrt{2x + 3}} \) consists of all real numbers \(x \) such that
 A) \(x \geq \frac{3}{2} \)
 B) \(x \geq \frac{2}{3} \)
 C) \(x > \frac{2}{3} \)
 D) \(x \geq -\frac{3}{2} \)
 E) \(x > -\frac{3}{2} \)
25) If \(f(x) = \sqrt{21 - 2x + x} \), then \(f(-2) = \)
 A) 0. B) \(\sqrt{17} \) - 2. C) 3. D) -7. E) 7.

26) If \(f(x) = (4x^2 + 1)^2 \), then \(f\left(-\frac{1}{2}\right) = \)
 A) -1. B) 0. C) 2. D) 3. E) 4.

27) If \(g(x) = 2x^2 - 3x + 4 \), then \(g(0) - g(2) = \)
 A) 2. B) -2. C) 0. D) -14. E) 14.

28) If \(f(x) = -x^2 - 2x - 6 \), then \(f(2) - f(t) = \)
 A) \(t^2 + 2t - 8 \). B) -\(t^2 - 2t + 4 \). C) \(t^2 - 2t + 4 \). D) -\(t^2 + 6t - 2 \). E) -4\(t^2 - 4t + 6 \).

29) If \(f(x) = 2x^2 - 3x + 4 \), then \(f(x + 1) = \)
 A) \(2x^2 - 3x \). B) \(2x^2 - 3x + 5 \). C) \(2x^2 + x + 6 \). D) \(2x^2 + x + 3 \). E) \(2x^2 + 4x + 7 \).

30) If \(f(t) = (t + 4)^2 \), then \(f(t - 3) = \)
 A) \(t^2 + 8t + 19 \). B) \(t^2 + 8t + 13 \). C) \(t^2 + 4t + 13 \). D) \(t^2 + 2t + 1 \). E) \(t^2 + 1 + 1 \).

31) If \(f(x) = x^2 - 3x + 4 \), then \(f(2 + h) - f(2) = \)
 A) \(h^2 + h \). B) \(h^2 + h - 4 \). C) \(h \). D) \(h^2 - 3h - 4 \). E) \(h^2 - 3h + 4 \).

32) If \(F(t) = (t^2 + 4)^3 \), then \(F(t^2 + 1) = \)
 A) \((t^2 + 1)^3 \). B) \((t^2 + 1)^3 + 4 \). C) \((t^2 + 5)^3 \). D) \((t^2 + 5)^3 + 1 \). E) \((t^4 + 2t^2 + 5)^3 \).

33) If \(f(x) = 4x + 5 \), then \(\frac{f(x + h) - f(x)}{h} = \)
 A) \(\frac{4x + h + 5}{h} \). B) 0. C) 1. D) 4. E) 4\(h \).

34) If \(f(x) = x^2 + 3x + 4 \), then \(\frac{f(x + h) - f(x)}{h} = \)
 A) 0. B) 1. C) \(2x + h + 3 \). D) \(4x + 3h - 2 \). E) \(\frac{h^2 + 3h - 8}{h} \).
35) Exactly how many of the following equations define \(y \) as a function of \(x \)?
 (a) \(y = 7 - x \)
 (b) \(y^2 = 4x \)
 (c) \(y = \sqrt{x} \)
 (d) \(x^2 = y + 4 \)
 A) none B) one C) two D) three E) all

36) Which equation below defines \(y \) as a function of \(x \)?
 A) \(\frac{x}{y} = y \)
 B) \(x^2 + y^2 = 9 \)
 C) \(y = \pm \sqrt{4 - x^2} \)
 D) \(3x - y^2 = 0 \)
 E) \(3y - x^2 = 0 \)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

37) Find the domain of the function: \(F(x) = \sqrt{2x + 3} \)

38) Find the domain of the function: \(f(x) = \sqrt{x^2 + x + 1} \)

39) Find the domain: \(\frac{3x + 5}{\sqrt{x^2 + 5}} \)

40) Let \(g(x) = \sqrt{2x + 3} \), find \(\frac{g(x + h) - g(x)}{h} \)

41) If \(f(x) = 1.05x^3 + 7.5x^2 - 1.9 \), then find \(f(-0.5) \)

42) Let \(f(t) = t^2 - 1 \), find (a) \(f(3t) \); (b) \(3 \times f(t) \)

43) Suppose \(f(x) = xy^2 + 3xy - y^2 \). Find \(f(y) \).

44) In the equation \(x^2 + y^2 = 17 \); (a) Is \(x \) a function of \(y \)? (b) Is \(y \) a function of \(x \)?

45) In the equation \(xy^2 + 2x + 3xy + 7y^2 = 11 \), is \(x \) a function of \(y \)?

46) If \(f(t) = 1.9x^2 - 3.1x + 2.01 \), then find \(f(x + 1.1) \).

47) If \(f(x) = \frac{1}{2x + 3} \), then find \(\frac{f(x + h) - f(x)}{h} \) and simplify.
48) The perimeter of a square depends on the length of its side.
 (a) Write a function \(p(l) \) for the perimeter of a square when the length of its side is \(l \).
 (b) What is the domain of this function out of context?
 (c) What is the domain of this function in the given context?
 (d) Find \(p(x) \), \(p(2x) \) and \(p(3x) \).
 (e) What happens to the perimeter of a square when the side is scaled by a factor \(s \)? Describe using an equation.

49) The elapsed time in seconds since January 1, 2000 at 12:00 A.M. depends on the elapsed hours since January 1, 2000 at 12:00 A.M.
 (a) Write a function \(e(h) \) for the elapsed seconds since January 1, 2000 at 12:00 A.M. when the elapsed hours are \(h \).
 (b) What is the domain of the function out of context?
 (c) What is the domain of this function in the given context?
 (d) Find \(e(t) \), \(e(-t) \), \(e(100t) \), and \(e(-100t) \).
 (e) What does multiplying the elapsed hour by \(-1\) mean?

50) The proceeds from an event depend on the number of people who attend.
 (a) Write a function \(p(n) \) for the proceeds if each ticket costs \$8.00 and the number of tickets sold is \(n \).
 (b) What is the domain of this function out of context?
 (c) What is the domain of this function in the given context?
 (d) Find \(p(c) \), \(p(c + 5) \), and \(p(c + 25) \).
 (e) What happens to the proceeds when the number who attend increases by a constant \(m \)? Describe using an equation.

51) The weekly salary of an hourly employee depends on the number of hours worked. Employers are required to pay time and a half if an employee works over 40 hours per week. Suppose an employer refuses to pay time and a half and time cards are recorded in half-hour increments.
 (a) Write a function \(s(h) \) for the weekly salary if a person's hourly pay is \$12.25 and the number of hours worked is \(h \).
 (b) What is the domain of this function out of context?
 (c) What is the domain of this function in the given context?
 (d) Find \(s(t) \), \(s(t - 5) \), and \(s(t - 7) \).
 (e) What happens to the salary if the work time decreases by a constant \(m \)? Describe using an equation.

52) The speed you must travel for a given amount of time depends on the distance you must cover.
 (a) Write a function \(r(d) \) for the speed if the time is 5 hours and the distance covered is \(d \).
 (b) What is the domain of this function out of context?
 (c) What is the domain of this function in the given context?
 (d) Find \(r(x) \), \(r\left(\frac{x}{2}\right) \) and \(r\left(\frac{x}{4}\right) \).
 (e) What happens to the speed if the distance is reduced (divided) by a constant \(c \)? Describe using an equation.

53) The height of an object thrown in the air depends on the time since it's been thrown. For a particular situation the height in meters of an object after \(t \) seconds can be represented by \(h(t) = 20t - 4.9t^2 \).
 (a) What is the domain of this function out of context?
 (b) What is the domain of this function in the given context?
 (c) Find \(h(s) \), \(h(s + 2) \), and \(h(s + 6) \).
 (d) Use an equation to describe what happens to the height if the time increases by a constant \(d \).
54) The perimeter of a square depends on the length of its side.
 (a) Write a function \(p(l) \) for the perimeter of a square.
 (b) How much linear fencing material is needed to fence a square garden of length \(x \)?
 (c) If the sides of the square garden are increased by 3 feet, how much more linear fencing material is needed?
 (d) How much more linear fencing material is needed per foot increase?
 (e) If the sides of the square garden is increased by \(h \), how much more linear fencing material is needed?
 (f) How much more linear fencing material is needed per unit increase?

55) The area of a circle depends on the length of its radius.
 (a) Write a function \(a(r) \) for the area of a circle.
 (b) How many square units of sod are needed to cover a circular grass area of radius \(x \)?
 (c) If the radius of the circular grass area is increased by 2 feet, how much more sod is needed?
 (d) How much more sod is needed per foot increase?
 (e) If the radius of a circular grass area is increased by \(h \), how much more sod is needed?
 (f) How much more sod is needed per unit increase?

56) The time it takes to go a given distance depends on the rate.
 (a) Write a function \(t(r) \) for the time it takes if the distance is 400 miles and the rate is \(r \) miles per hour.
 (b) How much time is needed when the rate is \(x \)?
 (c) If the speed is increased by 10 miles per hour, how much less time is needed?
 (d) How much less time is needed per mile per hour increase?
 (e) If the speed is increased by \(h \), how much less time is needed?
 (f) How much less time is needed per unit increase?

57) The height of an object thrown in the air depends on the time since it has been thrown. For a particular situation the height in meters of an object after \(t \) seconds can be represented by \(h(t) = 20t - 4.9t^2 \).
 (a) What is the height of the object if the time is \(x \) seconds?
 (b) If the time is increased by 2 seconds, how much higher is the object?
 (c) How much higher is the object per second increase?
 (d) If the time is increased by \(h \), how much higher is the object?
 (e) How much higher is the object per unit increase?

58) Suppose the weekly demand function for a pound of the house blend coffee at a local coffee shop is \(p = 15 - \frac{q}{60} \).
 (a) If the current price is $11.25 per pound, how much coffee is sold each week?
 (b) If they are selling 180 pounds of coffee each week, what is the current price?
 (c) If the owner wants to sell 300 pounds of coffee each week, what should the price be?

59) Suppose the yearly demand function for an artist's paintings is \(p = \frac{25,000}{q} \).
 (a) If the current prices is $200.00 per painting, how many paintings are sold each year?
 (b) If the artist wants to sell 4 paintings per year, what should the price be?

60) Suppose the weekly supply function for a large pizza at a local pizza parlor is \(p = \frac{q}{40} \).
 (a) How many large pizzas will be supplied if the price is $12.50 per pizza?
 (b) How many large pizzas will be supplied if the price is $18.75 per pizza?
 (c) How does the amount supplied change as the price increases?
61) Suppose the yearly supply function for a particular actor to star in a film is \(p = 150,000x \).
(a) How many films per year is the actor willing to produce if he earns $300,000 per film?
(b) How many films per year is the actor willing to produce if he earns $900,000 per film?
(c) How does the amount supplied change as the price increases?

62) Suppose the yearly supply function for paintings from an artist is \(p = 3000x \).
(a) How many paintings per year will be supplied if the price is $21,000 per painting?
(b) How many paintings per year will be supplied if the price is $51,000 per painting?
(c) How does the amount supplied change as the price increases?

2.2 Special Functions

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

1) Find the domain of the function \(f(x) = 6 \).

2) If \(f(x) = 7 \), find \(f(14) \).

3) If \(g(x) = |x + 4| \), find \(g(-5) \).

4) If \(f(x) = |1 - 2x| + 2x \), find: (a) \(f(1) \) and (b) \(f(-1) \).

5) Find: (a) the degree and (b) the leading coefficient of the polynomial function \(f(x) = 5x + 7 \).

6) Find: (a) the degree and (b) the leading coefficient of the polynomial function \(f(x) = 7 + 5x^2 - x^3 \).

7) Find: (a) the degree and (b) the leading coefficient of the polynomial function
\[P(x) = -x^5 + 6x^4 - 9x^2 + 7x + 3 \]

8) Given the function \(f(x) = \begin{cases} 3, & \text{if } x \geq 2 \\ -3, & \text{if } x < 2 \end{cases} \)
find:
(a) the domain
(b) \(f(0) \)
(c) \(f(2) \)
(d) \(f(-2) \)
(e) \(f(-3) \)

9) Given the function \(G(x) = \begin{cases} 4, & \text{if } x > 0 \\ x + 5, & \text{if } x \leq 0 \end{cases} \)
find:
(a) the domain
(b) \(G(0) \)
(c) \(G(6) \)
(d) \(G(-4) \)
(e) \(G(-10) \)
10) Given the function \(f(x) = \begin{cases}
2x, & \text{if } 0 < x < 1 \\
1 - x, & \text{if } 1 \leq x < 2, \\
0, & \text{if } 2 \leq x \leq 3
\end{cases} \)

find:
(a) the domain
(b) \(f(1) \)
(c) \(f(2) \)
(d) \(f(3) \)
(e) \(f(0.1) \)

11) Given the function \(F(x) = \begin{cases}
2 + x, & \text{if } x > 3 \\
5, & \text{if } x = 2, \\
4 - x, & \text{if } x < 2
\end{cases} \)

find:
(a) the domain
(b) \(F(2) \)
(c) \(F(-2) \)
(d) \(F(5) \)

12) Given the function \(f(x) = \begin{cases}
x^2, & \text{if } -1 < x < 0 \\
2x + 1, & \text{if } 0 \leq x < 1, \\
-x, & \text{if } 1 \leq x < 2
\end{cases} \)

find:
(a) the domain
(b) \(f(0) \)
(c) \(f(1) \)
(d) \(f \left(\frac{1}{2} \right) \)
(e) \(f \left(\frac{3}{2} \right) \)
(f) \(f(2) \)

13) Under certain conditions, if two brown-eyed parents have exactly four children, the probability \(P \) that exactly \(r \) of them are blue-eyed is a function of \(r \) and is given by \(P(r) = \frac{\binom{4}{r} \left(\frac{1}{4} \right)^r \left(\frac{3}{4} \right)^{4-r}}{r!(4-r)!} \).

Find the probability that exactly three children will be blue-eyed.

14) Under certain conditions, if two brown-eyed parents have exactly four children, the probability \(P \) that exactly \(r \) of them are blue-eyed is a function of \(r \) and is given by \(P(r) = \frac{\binom{4}{r} \left(\frac{1}{4} \right)^r \left(\frac{3}{4} \right)^{4-r}}{r!(4-r)!} \).

Find the probability that exactly one child will be blue-eyed.
15) The response \(R \) to a shock of intensity \(I \) is a number estimated by \(R = f(I) = \frac{I^2}{1000} \).

(a) Express \(f(2I) \) in terms of \(f(I) \).
(b) What effect does the doubling of intensity have on response?

16) For the polynomial function \(f(x) = 4x^3 + 2x^6 \),
Find: (a) the degree, and (b) the leading coefficient

17) For the polynomial function \(f(x) = 4 - 6x - 5x^3 \),
Find: (a) the degree, and (b) the leading coefficient

18) \[f(x) = \begin{cases} x^2, & \text{if } x < 0 \\ 4x, & \text{if } 0 \leq x \leq 1 \\ x, & \text{if } x > 1 \end{cases} \]

(a) \(f(-2) \)
(b) \(f(0) \)
(c) \(\frac{1}{4} \)
(d) \(f(1) \)
(e) \(f(5) \)

19) \[g(x) = \begin{cases} x^2 - 2x + 1, & \text{if } x < 0 \\ 2 - 3x, & \text{if } x \geq 0 \end{cases} \]

(a) \(g(-3) \)
(b) \(g(0) \)
(c) \(g(4) \)

20) Is \(3x^{-2} + x^{-1} + 5 + 6x + 11x^2 \) a polynomial function or a rational function? Why?

21) \[f(x) = \begin{cases} 3 - x, & \text{if } 2 \leq x \leq 5 \\ 1 - 2x, & \text{if } 0 \leq x < 2 \\ 7 + x^2, & \text{if } -3 \leq x < 0 \end{cases} \]

(a) find the domain of \(f(x) \)
(b) find \(f(3) \)

22) \[g(x) = \begin{cases} x^2 - 1, & \text{if } -1 \leq x \leq 2 \\ 2x - 3, & \text{if } -3 \leq x < -1 \\ x^2 + 1, & \text{if } -5 \leq x < -3 \end{cases} \]

(a) find the domain of \(f(x) \)
(b) find \(f(2) + f(-2) \)

23) Determine: (a) \(5! \); (b) \(\frac{5!}{3!2!} \)

24) Let \(f(x) = |2x - 3| \). Find \(f(4) - f(-4) \)
25) \(f(x) = \begin{cases}
0.01x^2 - 3.12 & \text{if } x \geq 6.3 \\
0.39x - 1.2 & \text{if } x < 6.3
\end{cases} \)

Find: (a) \(f(6.3) \); (b) \(f(0) \)

26) Ellen's health plan has a $5.00 copayment for complete pregnancy care.
(a) Write the cost of her prenatal care as a function of the number of prenatal visits she makes.
(b) How does Ellen's cost change as her number of prenatal visits increases?
(c) What kind of function is this?

27) A train holds 200 passengers and departs daily at 8:00 A.M.
(a) Write the daily departure time as a function of the number of people on the train.
(b) How does the departure time change as the number of people on the train increases?
(c) What kind of function is this?

28) A coffee shop earns $8.75 for every pound of coffee it sells.
(a) Write the profit as a function of the number of pounds of coffee sold.
(b) What kind of function is this?
(c) What is its degree?
(d) What is its leading coefficient?

29) The height of an object thrown in the air depends on the time since it has been thrown. For a particular situation the height in meters of an object after \(t \) seconds can be represented by \(h(t) = 32t - 4.9t^2 \).
(a) What kind of function is this?
(b) What is its degree?
(c) What is its leading coefficient?

30) A rectangular sheet of metal has a length that is 4 more than the width.
(a) Write the area of the rectangular sheet as a function of the width.
(b) Without simplifying, write the ratio of the length of the sheet to the area of the sheet as a function of the width.
(c) Simplify the function you wrote in b.
(d) What kind of function is this?
(e) What is its domain out of context?
(f) What is its domain in the given context?

31) A rectangular sheet of metal has a length that is 2 less than 4 times the width.
(a) Write the area of the rectangular sheet as a function of the width.
(b) Without simplifying, write the ratio of the length of the sheet to the area of the sheet as a function of the width.
(c) Simplify the function you wrote in b.
(d) What kind of function is this?
(e) What is its domain out of context?
(f) What is its domain in the given context?
32) A cylinder has a height that is 4 more than the diameter of its base.
\[\text{a) Write the area of its circular base as a function of its radius.} \]
\[\text{b) Write the volume of the cylinder as a function of its radius.} \]
\[\text{c) Without simplifying, write the ratio of the area of the circular base and the volume of the cylinder as a function of the radius.} \]
\[\text{d) Simplify the function you wrote in c.} \]
\[\text{e) What kind of function is this?} \]
\[\text{f) What is its domain out of context?} \]
\[\text{g) What is its domain in the given context?} \]

33) A cylinder has a height that is 3 times as long as the radius.
\[\text{a) Write the area of its circular base as a function of its radius.} \]
\[\text{b) Write the volume of the cylinder as a function of its radius.} \]
\[\text{c) Without simplifying, write the ratio of the area of the circular base and the volume of the cylinder as a function of the radius.} \]
\[\text{d) Simplify the function you wrote in c.} \]
\[\text{e) What kind of function is this?} \]
\[\text{f) What is its domain out of context?} \]
\[\text{g) What is its domain in the given context?} \]

34) To encourage conservation, a gas company charges two rates. You pay $0.53 per therm for 0–70 therms and $0.74 for each therm over 70. Write a compound fraction to represent the monthly cost of t therms of water.

35) To encourage an even flow of customers, a restaurant varies the price of an item throughout the day. From 6:00 P.M. to 8:00 P.M. customers pay full price. At lunch from 10:30 A.M. until 2:30 P.M. customers pay half price. From 2:30 until 4:30 customers get a dollar off the lunch price. From 4:30 P.M. until 6:00 P.M. customers get $5.00 off the dinner price. From 8:00 until closing time at 10:00 customers get $5.00 off the dinner price. Write a compound function to represent the cost of an item throughout the day for a dinner price of d.

36) Brett rented a bike from a rental shop and rode at a constant rate of 12 mph for 2.5 hours along a bike path, and then returned along the same path at the same rate. Write an absolute-value function to represent Brett's distance from the rental shop as a function of time.

37) Julie lives 32 miles from the city. She drove home from the city at a constant rate of 60 mph along the highway. At the exit 2 miles from her home, she realized she had left her purse at the department store. She immediately returned to the department store at a rate of 60 mph. Write an absolute-value function to represent Julie's distance from home as she drove home from the city.

38) In June Gail decided to save $20.00 a week. She saved for 14 weeks and then for 14 weeks she spent $20.00 a week on gifts. Write an absolute-value function to represent the amount of money Gail had in savings.

39) In November, Steve uses his credit cards to buy $30.00 of holiday gifts each week. After 8 weeks he begins saving $30.00 each week to pay his credit card bill. Write an absolute-value function to represent the amount Steve has saved since he started buying holiday gifts. (Hint: Let purchases on credit cards represent negative savings.)

40) Suppose a committee of 6 people is to be selected from a group of 25. How many groups are possible? Represent as a factorial and give the solution.
41) You want to play a lottery that uses 50 numbers. How many combinations are possible if you need to pick 5 numbers? Represent as a factorial and give the solution.

2.3 Combinations of Functions

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

1) If \(f(x) = x^2 \) and \(g(x) = 2x + 1 \), find:
 (a) \((f + g)(x)\)
 (b) \((f + g)(3)\)
 (c) \((f - g)(x)\)
 (d) \((fg)(x)\)
 (e) \(\left(f\right)\left(g\left(-\frac{1}{2}\right)\right)\)
 (f) \(\left(f\right)\left(g\left(2\right)\right)\)
 (g) \(f(g(x))\)
 (h) \(f(g(1))\)
 (i) \(g(f(x))\)

2) If \(f(x) = 2x + 3 \) and \(g(x) = x^2 - 4x - 2 \), find:
 (a) \((f + g)(x)\)
 (b) \((f - g)(x)\)
 (c) \((fg)(x)\)
 (d) \(\left(f\right)\left(g\left(x\right)\right)\)
 (e) \(f(g(x))\)
 (f) \(g(f(x))\)
 (g) \(f(g(1))\)
 (h) \(g(f(1))\)

3) If \(f(x) = 5 - x \) and \(g(x) = 2x^2 - 3x + 4 \), find:
 (a) \((f + g)(x)\)
 (b) \((f - g)(x)\)
 (c) \((fg)(x)\)
 (d) \(\left(f\right)\left(g\left(2\right)\right)\)
 (e) \(\left(f\right)\left(g\left(0\right)\right)\)
 (f) \(\left(f\right)\left(g\left(x\right)\right)\)
 (g) \(f(g(x))\)
 (h) \(g(f(x))\)
 (i) \(g(f(1))\)

4) Let \(f(x) = x^2 + 3x + 1 \) and \(g(x) = -2 \).
 (a) Find: \((f \circ g)(x)\)
 (b) Find: \((g \circ f)(x)\)

5) If \(f(x) = 2x + 3 \) and \(g(x) = 3x - 2 \), find:
 (a) \((f \circ g)(x)\)
 (b) \((g \circ f)(x)\)
6) If \(f(x) = 3 - 2x \) and \(g(x) = x^2 + 7 \), find:
 a) \((f \circ g)(x) \)
 b) \((g \circ f)(x) \)

7) If \(f(x) = 2x^2 + 1 \) and \(g(x) = x - 1 \), find \((f \circ g)(x) - (g \circ f)(x) \).

8) If \(f(x) = \sqrt{x + 4} \) and \(g(x) = x^3 + 5 \), find:\n a) \(f(g(x)) \) and \(b) g(f(x)) \)

9) If \(f(x) = \frac{1}{x + 1} \) and \(g(x) = x + 1 \), find:\n a) \(f(g(x)) \) and \(b) g(f(x)) \)

10) If \(f(x) = 3 - 2x \), find \(f(f(x)) \).

11) If \(h(x) = (2x - 3)^5 \), find functions \(f \) and \(g \) such that \(h(x) = f(g(x)) \).

12) If \(h(x) = \frac{x^2}{x^2 + 1} \), find functions \(f \) and \(g \) such that \(h(x) = f(g(x)) \).

13) If \(h(x) = \sqrt[3]{x + 4} \), find functions \(f \) and \(g \) such that \(h(x) = f(g(x)) \).

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

14) If \(f(x) = \sqrt{x - 3} \) and \(g(x) = x^2 - 7 \), then \(f(g(7)) = \)
 A) 81. B) \(\sqrt{42} \). C) \(\sqrt{39} \). D) 84. E) -3.

15) If \(f(x) = x^2 + 1 \) and \(g(x) = x^3 \), then \((f \circ g)(x) = \)
 A) \(x^5 + 1 \).
 B) \(x^6 \).

16) If \(f(x) = 4x - 5 \) and \(g(x) = x^2 + 3x - 1 \), then \(f(g(x)) = \)
 A) \(x^2 + 4x + 5 \).
 B) \(x^2 + 7x - 6 \).
 C) \(4x^3 + 7x^2 - 19x + 5 \).
 D) \(4x^2 + 12x - 9 \).
 E) \(16x^2 - 28x + 9 \).

17) If \(f(x) = \sqrt{x + 5} \) and \(g(x) = x^2 - 3x - 5 \), then the value of \((f \circ g)(4) \) is
 A) 2. B) \(2\sqrt{3} \). C) 5. D) -3. E) -4.

18) If \(f(x) = 4 - 3x \), then \((f \circ f)(x) = \)
 A) \(8 - 6x \).
 B) \(6x - 8 \).
 C) \(9x - 8 \).
 D) \(16 - 9x^2 \).
 E) \(16 - 24x + 9x^2 \).
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

19) If \(f(x) = \frac{x + 1}{x - 7} \) and \(g(x) = 2x^3 \), find \((f \circ g)(x) \).

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

20) If \(f(x) = 2x - 1 \) and \(g(x) = 4x + 8 \), then \(g(f(x)) = \)
 A) \(16x - 8 \).
 B) \(16x + 7 \).
 C) \(16x^2 + 12x - 8 \).
 D) \(8x + 4 \).
 E) \(8x + 15 \).

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

21) If \(f(x) = x^2 + 1 \) and \(g(x) = 3x^2 + 4 \), find \(f(g(x)) \).

22) Let \(f(x) = \begin{cases} \frac{x^2 + 2x}{3x - 2} & \text{if } 0 \leq x \leq 5; \\ 1 - 4x & \text{if } -3 \leq x < 0 \end{cases} \) and \(g(x) = 1 - 4x \).
 Find:
 (a) \(f(0) \)
 (b) \(f(-1) \)
 (c) \(f(4) - f(-2) \)
 (d) \(f(g(0)) \)
 (e) \(g(f(0)) \)

23) Let \(g(x) = 1 - 4x \), \(h(x) = x^2 + 3x \). Find: (a) \((g \circ h)(x) \); (b) \((h \circ g)(x) \)

24) \(h(x) = x^3 - 7x^2 + 1 \); \(g(x) = x^2 + 2x \). Find
 (a) \((h \circ g)(x) \)
 (b) \((h - g)(x) \)
 (c) \((h \circ g)(x) \)
 (d) \(\frac{h}{g}(x) \)

25) Let \(h(x) = \sqrt{7 - x} \). Find functions \(f \) and \(g \) such that \(h = f \circ g \).

26) Let \(h(x) = 3(x + 1)^3 + 7(x - 1)^2 + 8(x - 1) + 11 \). Find functions \(f \) and \(g \) such that \(h = f \circ g \).

27) \(f(x) = \begin{cases} x - 2 & \text{if } x \geq 0; \\ 2x + 1 & \text{if } x < 0 \end{cases} \); \(g(x) = x^2 - 4 \).
 Find:
 (a) \((f \circ g)(-1) \)
 (b) \((g \circ f)(-1) \)
 (c) \((f \circ g)(2) \)
 (d) \((g \circ f)(2) \)
28) Traci earns $15.00 per hour and Rich earns $18.00 per hour.
 (a) Write a function \(t(x)\) for Traci’s earnings as a function of hours worked.
 (b) Write a function \(r(x)\) for Rich’s earnings as a function of hours worked.
 (c) Assuming they work the same number of hours each week, write a function
 \((t + r)(x)\) for their combined earnings as a function of hours worked.

29) Suppose an artist always paints rectangular pictures using a square of unknown length as a reference. She always makes the length 4 units longer than the square, and the width is 2 units longer than the square.
 (a) Write a function \(l(x)\) for the length of a painting as a function of the length of the square.
 (b) Write a function \(a(x)\) for the area of a painting as a function of the length of the square.
 (c) Write a function \(\frac{l}{a}(x)\) for the ratio of the length to the area as a function of the length of the square.

30) A shirt costs \(x\) wholesale. The price the store pays is given by the function \(s(x) = \frac{3}{2}x + 5\), where \(x\) is the wholesale price. The price the customer pays is \(c(x) = 2(x + 1)\) where \(x\) is the price the store pays. Write a composite function to find the customer’s price as a function of the wholesale price.

31) A coat costs \(x\) wholesale. The price the store pays is given by the function \(s(x) = 1.2x\) where \(x\) is the wholesale price. The price the customer pays is \(c(x) = 2x + 50\) where \(x\) is the price the store pays. Write a composite function to find the customer’s price as a function of the wholesale price.

32) A car costs \(x\) wholesale. The price the dealer pays is given by the function \(s(x) = x + 500\), where \(x\) is the wholesale price. The price the customer pays is \(c(x) = x + 1500\) where \(x\) is the price the dealer pays. Write a composite function to find the customer’s price as a function of the wholesale price.

33) Suppose the area of a square tablecloth is \(A(x) = (x + 6)^2\). Express as a composition of two functions and explain what each function represents.

34) Suppose the volume of a cube is \(V(x) = (x - 4)^3\). Express as a composition of two functions and explain what each function represents.

2.4 Inverse Functions

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

1) Find the inverse of the function: \(f(x) = 3x + 6\)

2) Find the inverse of the function: \(f(x) = (x - 2)^2\), for \(x \geq 2\)

3) Determine whether or not the function is one-to-one: \(f(x) = 4x + 3\)

4) Determine whether or not the function is one-to-one: \(f(x) = x^2 - 3\)

5) Determine whether or not the function is one-to-one: \(f(x) = (x + 2)^3 - 8\).

6) Determine whether or not the function is one-to-one: \(f(x) = 1x - 81\).
7) Let \(p = 500 - \frac{1}{2}q \) represent a demand equation for a product where \(p \) is unit price and \(q \) is quantity with the restriction \(0 \leq q < 1000 \). Express the quantity \(q \) as a function of \(p \).

2.5 Graphs in Rectangular Coordinates

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

1) The graph of \(y = f(x) \) is shown below. (a) What is the domain of \(f \)? (b) What is the range of \(f \)?

2) The graph of \(y = f(x) \) is shown below. Estimate:
 (a) \(f(-1) \)
 (b) \(f(0) \)
 (c) \(f(2) \)
 (d) \(f(3) \)
 (e) What is the domain of \(f \)?
 (f) What is the range of \(f \)?
3) Which graphs below represent functions of x?

(a)
(b)
(c)

4) Determine the x- and y-intercepts of the graph of $y = x^2 + x - 12$.

5) Determine the x- and y-intercepts of the graph of $y = x^3 - 4x$.

6) Determine the x- and y-intercepts of the graph of
$$\frac{y}{x} = \frac{7 - 14x}{(x + 2)(x - 1)}.$$

7) Determine the x- and y-intercepts of the graph of
$$y = \frac{4}{x^2 - 3x + 2}.$$

8) Determine the x- and y-intercepts of the graph of
$$\frac{x^2}{25} + \frac{y^2}{64} = 1.$$

9) Determine the x- and y-intercepts of the graph of $y = e^{x}(x + 3)$.

10) Determine the x- and y-intercepts of the graph of $y = x^4 - 16$.

11) Determine the x- and y-intercepts of the graph of
$$y = \frac{x^2 - 3x - 10}{x^2 + 2x + 1}.$$

12) (a) Sketch the graph of $y = 2x + 1$. (b) Determine the intercepts.
(c) Based on your graph, is y a function of x? If so, state
(d) the domain and (e) the range.
13) (a) Sketch the graph of \(y = f(x) = 2x + 6 \). (b) Determine the intercepts. State (c) the domain and (d) the range of \(f \).

14) Sketch the graph of \(f(x) = x^2 - 2x \). Also determine the intercepts.

15) Sketch the graph of \(f(x) = x^3 + 1 \). Also determine the intercepts.

16) Sketch the graph of \(s = f(t) = \sqrt{t} + 2 \). Also determine the intercepts.

17) Sketch the graph of \(f(x) = \begin{cases} -1, & \text{if } x \geq 0 \\ 2, & \text{if } x < 0 \end{cases} \) and give the domain and range.

18) Sketch the graph of \(f(x) = \begin{cases} 3x + 1, & \text{if } 0 \leq x < 2 \\ 7 - x, & \text{if } x \geq 2 \end{cases} \), and give the domain and range.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

19) The domain and range of the function \(f \) whose graph appears below is

A) Domain: all real numbers
Range: all real numbers

B) Domain: all real numbers
Range: all real numbers greater than or equal to -1

C) Domain: all real numbers greater than or equal to -1
Range: all real numbers

D) Domain: all real numbers
Range: all nonnegative real numbers

E) Domain: all nonnegative real numbers
Range: all real numbers less than or equal to -1
20) The domain and range of the function \(f \) whose graph appears below is

A) Domain: all real numbers
 Range: all real numbers

B) Domain: all real numbers
 Range: all real numbers less than or equal to 4

C) Domain: all real numbers less than or equal to 4
 Range: all real numbers

D) Domain: all real numbers less than or equal to 4
 Range: all nonnegative real numbers

E) Domain: all nonnegative real numbers
 Range: all real numbers less than or equal to 4

21) The \(x \)- and \(y \)-intercepts of the graph of \(\frac{x^2}{4} + \frac{y^2}{9} = 1 \) are

A) (4, 0), (0, 9).
B) (0, 4), (9, 0).
C) (0, ± 2) (± 3, 0).
D) (± 2, 0) (0, ± 3).
E) (0, 0), (± 1, 0), (0, 3).

22) The \(x \)- and \(y \)-intercepts of the graph of \(y = \frac{3}{x^2 - 1} \) are

A) (3, 0).
B) (0, -3).
C) (1,0), (0, 3).
D) (±1, 0), (0, 3).
E) (0, 0), (±1, 0), (0, -3).
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

23) By looking at the graph below:
 (a) list all values for which \(f(x) = 0 \)
 (b) \(f(2) = \)
 (c) \(f(-2) = \)
 (d) domain of \(f \) is?
 (e) range of \(f \) is?

24) By looking at the graph below:
 (a) list all values for which \(f(x) = -2 \)
 (b) \(f(-1) = \)
 (c) \(f(0) = \)
 (d) domain of \(f(x) \) is?
 (e) range of \(f(x) \) is?

25) Find the \(x \)-intercepts and the \(y \)-intercepts of \(y = \frac{x^2 + 4x - 5}{3} \)

26) Use a graphing calculator to find all real roots of the equation. Round answers to two decimal places, if necessary: \((x - 1)^3 = 3 - x^2\)

27) Use a graphing calculator to find all real roots of the given function. Round answers to two decimal places, if necessary: \(f(x) = x^3 - 8x - 3 \)

28) Use a graphing calculator to find all real roots of the given function. Round answers to two decimal places, if necessary: \(f(x) = x^4 - x^3 - 7x^2 + 5x + 10 = 0 \)

29) Use a graphing calculator to find the maximum value of \(f(x) \) and the minimum value of \(f(x) \) for the indicated values of \(x \):
 \(f(x) = 0.8x^4 - 3.1x^3 + 1.2x^2 + x + 1; \ 0 \leq x \leq 3 \)
30) Tom has saved $1500 for a vacation. He plans to spend $250 a week on his vacation. Write an equation to represent the amount in savings and identify the intercepts.

31) Bill has charged $2300 on his charge card. He plans to pay $60 a month on his charge cards. Write an equation to represent the amount he owes excluding any finance charges, and identify the intercepts.

32) The train holds 175 passengers. It departs daily at 9:00 A.M. Let x represent the time and y represent the number of passengers. Write an equation which represents the relationship between the number of passengers on the train and the train’s departure time. Describe the graph of this equation, and identify the intercepts.

33) A daily round trip train ticket to the city costs $4.25. Let x represent the passenger’s income and y represent the cost of a daily round trip train ticket. Write an equation which represents the relationship between the cost of a daily round trip ticket and a passenger’s income; describe the graph of this equation, and identify the intercepts.

34) Ellen’s health plan has a $10.00 copayment for complete pregnancy care. Let x represent the number of prenatal visits and y represent her cost for the pregnancy. Write an equation which represents the relationship between her cost for the pregnancy and her number of prenatal visits; describe the graph of this equation, and identify the intercepts.

35) Julie lives 32 miles from the city. She drove home from the city at a constant rate of 60 mph along the highway. At the exit 2 miles from her home, she realized she had left her purse at the department store. She immediately returned to the department store at a rate of 60 mph. Graph the absolute-value function to represent Julie’s distance from home as she drove home from the city over the appropriate domain.

36) In June, Gail decided to save $20.00 a week. She saved for 14 weeks and then for 14 weeks she spend $20.00 a week on gifts. Graph the absolute-value function to represent the amount of money Gail had in savings over the appropriate domain.

37) In November, Steve uses his credit cards to buy $30.00 of holiday gifts each week. After 8 weeks he begins saving $30.00 each week to pay his credit card bill. Graph the absolute-value function to represent the amount Steve has saved since he started buying holiday gifts over the appropriate domain. (Hint: Let purchases on credit cards represent negative savings.)

38) To reduce inventory, a department store charges three rates. If you buy 0–5 pairs of socks, the price is $3.50 per pair of socks. If you buy 6–10 pairs of socks, the price is $3.00 per pair. If you buy more than 10, the price is $2.75 per pair. Graph the compound function that represents the cost of buying N pairs of socks.

39) To encourage large group sales, a theater charges two rates. If your group is fewer than 10, each ticket costs $7.50. If your group is 10 or more, each ticket costs $7.00. Graph the compound function that represents the cost of buying N tickets.

2.6 Symmetry

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

1) Determine whether the graph of $y = x - 2x^3$ is symmetric about the x-axis, the y-axis, the origin, or the line $y = x$.

Page 94
2) Determine whether the graph of \(y^2 = 4 - x^2 \) is symmetric about the x-axis, the y-axis, the origin, or the line \(y = x \).

3) Determine whether or not the graph of \(y = \frac{x^2 (x^2 - 9)}{x^4 + 4} \) is symmetric about the x-axis, the y-axis, the origin, or the line \(y = x \).

4) Determine whether the graph \(y = \frac{x^2 - 1}{x} \) is symmetric about the x-axis, the y-axis, the origin, or the line \(y = x \).

5) Determine whether the graph of \(x = y^2 - 4 \) is symmetric about the x-axis, the y-axis, the origin, or the line \(y = x \).

6) Determine whether the graph of \(x^2 - xy = 1 \) is symmetric about the x-axis, the y-axis, the origin, or the line \(y = x \).

7) Determine whether the graph of \(y = x^2 - x^4 \) is symmetric about the x-axis, the y-axis, the origin, or the line \(y = x \).

8) Determine whether the graph of \(\frac{x^2}{y^2 - 9} = 4 \) is symmetric about the x-axis, the y-axis, the origin, or the line \(y = x \).

9) Determine the x- and y-intercepts, if they exist, of the graph of \(9x^2 + y^2 + 8y = 9 \). Also determine whether the graph is symmetric about the x-axis, the y-axis, the origin, or the line \(y = x \).

10) Determine the x- and y-intercepts, if they exist, of the graph of \(\frac{x^2}{4} - \frac{y^2}{9} = 1 \). Also determine whether the graph is symmetric about the x-axis, the y-axis, the origin, or the line \(y = x \).

11) For the graph of \(y = \frac{1}{x^2} \)
 (a) Determine the intercepts.
 (b) Determine whether the graph is symmetric about the x-axis, the y-axis, the origin, or the line \(y = x \).
 (c) Sketch the graph. (d) Based on your graph, is \(y \) a function of \(x \)? If so, state (e) the domain and (f) the range.

12) For the graph of \(y = f(x) = x^2 - 4 \)
 (a) Determine the intercepts.
 (b) Determine whether the graph is symmetric about the x-axis, y-axis, the origin, or the line \(y = x \).
 (c) Sketch the graph. State (d) the domain and (e) the range of \(f \).
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

13) The graph of \(y = x^3 \) is symmetric about the
 A) \(x \)-axis only.
 B) \(y \)-axis only.
 C) origin only.
 D) \(x \)-axis, \(y \)-axis, the origin, and the line \(y = x \).
 E) none of the above

14) The graph of \(y = \frac{x^2}{x^4 - 1} \) is symmetric about the
 A) \(x \)-axis only.
 B) \(y \)-axis only.
 C) origin only.
 D) \(x \)-axis, \(y \)-axis, the origin, and the line \(y = x \).
 E) none of the above

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

15) Determine whether the graph of \(y^2 = \frac{7 - 9x^2}{1 - x^2} \) is symmetric about the \(x \)-axis, the \(y \)-axis, the origin, or the line \(y = x \).

16) Determine whether the graph of \(y = \frac{0.23 - 0.8x^2}{0.9 - 0.1x^2} \) is symmetric about the \(x \)-axis, the \(y \)-axis, the origin, or the line \(y = x \).

17) Determine the \(x \)-intercepts and \(y \)-intercepts if they exist. Also determine whether the graph is symmetric about the \(x \)-axis, \(y \)-axis, the origin, or the line \(y = x \) for \(3y^3 = x \).

18) Determine the \(x \)-intercepts if they exist. Also determine whether the graph is symmetric about the \(x \)-axis, \(y \)-axis, the origin, or the line \(y = x \) for \(y = |x| \).

2.7 Translations and Reflections

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

1) Sketch a graph of \(y = |2x - 5| \)
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

2) To obtain a graph of \(y = 7x^2 + 3 \) from the graph of \(y = 7x^2 \), which of the following statements is true?
 A) shift 3 units to the left
 B) shift 3 units to the right
 C) shift 3 units up
 D) shift 3 units down
 E) none of the above

3) To obtain a graph of \(y = 7(x - 1)^2 \) from the graph of \(y = 7x^2 \), which of the following statements is true?
 A) shift 1 unit to the left
 B) shift 1 unit to the right
 C) shift 1 unit up
 D) shift 1 unit down
 E) none of the above

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

4) Use the graph of \(y = f(x) \).
 Sketch a graph of \(y = f(x + 3) \).

5) Sketch a graph of \(f(x) = x^2 - 2 \)
6) Sketch a graph of \(f(x) = (x - 5)^2 \)

7) Sketch a graph of \(f(x) = (x - 1)^2 - 4 \)

8) Sketch a graph of \(f(x) = x^3 + 5 \)
9) Sketch a graph of \(f(x) = (x + 5)^3 \)

10) Sketch a graph of \(f(x) = (x - 3)^3 + 5 \)

11) Sketch a graph of \(f(x) = \sqrt{x} - 3 \)
12) Sketch a graph of $f(x) = \sqrt{x - 4}$

13) Sketch a graph of $f(x) = \sqrt{x + 7} - 4$

14) Sketch a graph of $f(x) = |x| - 5$
15) Sketch a graph of \(f(x) = |x + 1| \)

16) Sketch a graph of \(f(x) = |x + 4| - 5 \)

17) Sketch a graph of \(f(x) = \frac{1}{x} + 4 \)
18) Sketch a graph of \(f(x) = \frac{1}{x - 4} \)

19) Sketch a graph of \(f(x) = \frac{1}{x - 5} - 3 \)

20) List the graphical transformations, in the correct order, that must be done to \(y = f(x) \) to produce the graph of \(y = 2f(x + 3) - 5 \).

21) List the graphical transformations, in the correct order, that must be done to \(y = f(x) \) to produce the graph of \(y = -f(x - 5) + 4 \).
2.1 Applications of Functions

1) all real numbers
2) all real numbers except \(-2\) and \(1\)
3) all real numbers \(\geq 1\) except \(3\)
4) all \(x \geq 11\)
5) all \(q \leq \frac{4}{3}\)

6) (a) all real numbers
 (b) \(-3\)
 (c) 21
 (d) 0
 (e) \(5 - 8t\)
 (f) \(-11 - 8x\)

7) (a) all real numbers
 (b) 2
 (c) 23
 (d) \(-2\)
 (e) \(t^4 - 4t^2 + 2\)

8) (a) all real numbers
 (b) 3
 (c) 11
 (d) \(\frac{17}{4}\)
 (e) \(t^6 - 2t^3 + 3\)
 (f) \(s^2 + 2\)
 (g) \(x^2 + 2hx + h^2 - 2x - 2h + 3\)

9) (a) all real numbers except 4
 (b) 0
 (c) \(\frac{1}{2}\)
 (d) \(-\frac{1}{7}\)
 (e) \(\frac{x^2}{x^2 - 4}\)

10) (a) all real numbers except 2
 (b) \(-\frac{3}{2}\)
 (c) 0
 (d) \(\frac{7}{2}\)
 (e) \(\frac{3s}{1 - 2s} - \frac{1}{s}\)

11) (a) all \(t \geq -3\)
 (b) 0
 (c) 4
 (d) \(\sqrt{t^2 + 4}\)

12) 3
13) \(2x + h + 2\)
14) \(-2x - h\)

15) \(f(3s) = 36s^2 + 18s\)

16) \(g(x - 1) = \frac{x + 1}{x - 6}\)

17) True

18) (a) yes (b) no

19) A

20) D

21) C

22) A

23) B

24) E

25) C

26) E

27) B

28) A

29) D

30) D

31) A

32) E

33) D

34) C

35) D

36) E

37) \(x \geq -\frac{3}{2}\)

38) all real numbers

39) all real numbers

40) \(\frac{\sqrt{2x + 2h + 3} - \sqrt{2x + 3}}{h}\)

41) \(-0.15625\)

42) (a) \(9t^2 - 1\) (b) \(3t^2 - 3\)

43) \(y^3 + 2y^2\)

44) (a) No (b) No

45) Yes

46) \(1.9x^2 + 1.08x + .899\)

47) \(-\frac{2}{(2x + 2h + 3)(2x + 3)}\)

48) (a) \(p(l) = 4l\)

(b) all are real numbers

(c) \(l \geq 0\)

(d) \(4x; 8x; 12x\)

(e) The perimeter gets scaled by a factor \(s\); \(p(sx) = 4sx\)

49) (a) \(e(h) = 3600h\)

(b) all real numbers

(c) all real numbers

(d) \(3600t; -3600t; 360,000t; -360,000t;\)

(e) The sign changes. Since the function gives the seconds since January 1, 2000 at 12:00 A.M., a positive number represents seconds after that moment, and a negative number represents seconds before that moment.
50) (a) \(p(n) = 8n \)
 (b) all real numbers
 (c) whole numbers
 (d) 8c; 8c + 40; 8c + 200
 (e) The proceeds increase by $8m; p(x + m) = 8x + 8m

51) (a) \(s(h) = 12.25h \)
 (b) all real numbers
 (c) \{0, 0.5, 1, 1.5, ... 40\}
 (d) 12.25t; 12.25t - 61.25; 12.25t - 85.75
 (e) The salary decreases by 12.25m; \(s(x - m) = 12.25x - 12.25m \)

52) (a) \(r(d) = \frac{d}{5} \)
 (b) all real numbers
 (c) \(d \geq 0 \)
 (d) \(\frac{x}{5}; \frac{x}{10}; \frac{x}{20} \)
 (e) The speed is reduced by a factor of \(c; \left(\frac{x}{c} \right) \)

53) (a) all real numbers
 (b) \(t \geq 0 \)
 (c) \(-4.9s^2 + 20s; -4.9s^2 + 0.4s + 20.4; -4.9s^2 - 38.8s - 56.4 \)
 (d) \(h(s + d) = -4.9s^2 + (20 - 9.8d)s + 20d - 4.9d^2 \)

54) (a) \(p(l) = 4l \)
 (b) 4x feet
 (c) 12 feet
 (d) 4 feet
 (e) 4h units
 (f) 4 units

55) (a) \(a(r) = \pi r^2 \)
 (b) \(\pi x^2 \) square feet
 (c) \(4\pi x + 4\pi \) square feet
 (d) \(2\pi x + \pi \) square feet
 (e) \(2\pi xh + \pi h^2 \) square units
 (f) \(\pi x + \pi \) square units

56) (a) \(t(r) = \frac{400}{r} \)
 (b) \(\frac{400}{x} \) hours
 (c) \(\frac{4000}{x(x + 10)} \) hours
 (d) \(\frac{400}{x(x + 1)} \) hours
 (e) \(\frac{400h}{x(x + h)} \) hours
 (f) \(\frac{400}{x(x + 1)} \) hours

57) (a) \(20x - 4.9x^2 \) meters
 (b) \(-19.6x + 20.4 \) meters
 (c) \(-9.8x + 15.1 \) meters
 (d) \(-9.8hx + 20h - 4.9h^2 \) meters
 (e) \(-9.8x + 15.1 \) meters

Page 105
58) (a) 225 pounds
(b) $12.00 per pound
(c) $10.00 per pound
59) (a) 125 paintings
(b) $6250
60) (a) 500 pizzas
(b) 750 pizzas
(c) Amount supplied increases as the price increases.
61) (a) 2 films per year
(b) 6 films per year
(c) Amount supplied increases as the price increases.
62) (a) 7 paintings per year
(b) 17 paintings per year
(c) Amount supplied increases as the price increases.

2.2 Special Functions

1) all real numbers
2) 7
3) 1
4) (a) 3
 (b) 1
5) (a) 1
 (b) 5
6) (a) 3
 (b) -1
7) (a) 5
 (b) -1
8) (a) all real numbers
 (b) -3
 (c) 3
 (d) -3
 (e) -3
9) (a) all real numbers
 (b) 5
 (c) 4
 (d) 1
 (e) -5
10) (a) 0 < x ≤ 3
 (b) 0
 (c) 0
 (d) 0
 (e) 0.2
11) (a) x ≤ 2 ∪ x > 3
 (b) 5
 (c) 6
 (d) 7
12) (a) -1 < x < 2
 (b) 1
 (c) -1
 (d) $\frac{1}{4}$
 (e) 2
 (f) $-\frac{3}{2}$
13) $\frac{3}{64}$
14) $\frac{27}{64}$
15) (a) \(4f(l_0) \)
 (b) It quadruples response.

16) (a) 6; (b) 2

17) (a) 3; (b) -5

18) (a) 4
 (b) 0
 (c) 1
 (d) 4
 (e) 5

19) (a) 16
 (b) 2
 (c) -10

20) Rational function, since it has negative exponents.

21) (a) \(-3 \leq x \leq 5\) (b) 0

22) (a) \(-5 \leq x \leq 2\) (b) -4

23) (a) 120 (b) 10

24) -6

25) (a) -2.7231 (b) -1.2

26) (a) \(p(n) = 5 \)
 (b) Her cost does not change.
 (c) constant function

27) (a) \(t(n) = 8:00 \)
 (b) The departure times does not change.
 (c) constant function

28) (a) \(p(n) = 8.75n \)
 (b) linear function
 (c) 1
 (d) 8.75

29) (a) quadratic function
 (b) 2
 (c) -4.9

30) (a) \(a(w) = w(w + 4) \)
 (b) \(f(w) = \frac{w + 4}{w(w + 4)} \)
 (c) \(f(w) = \frac{1}{w} \)
 (d) rational function
 (e) all real numbers except 0 and -4
 (f) \(w > 0 \)

31) (a) \(a(w) = w(4w - 2) \)
 (b) \(f(w) = \frac{4w - 2}{w(4w - 2)} \)
 (c) \(f(w) = \frac{1}{w} \)
 (d) rational function
 (e) all real numbers except 0 and \(\frac{1}{2} \)
 (f) \(w > \frac{1}{2} \)
32) (a) \(a(r) = \pi r^2 \)
(b) \(v(r) = (2r + 4)(\pi r^2) \)
(c) \(f(r) = \frac{\pi r^2}{(2r + 4)(\pi r^2)} \)
(d) \(\frac{1}{2r + 4} \)
(e) rational function
(f) all real numbers except \(-2\) and \(0\)
(g) \(r > 0 \)

33) (a) \(a(r) = \pi r^2 \)
(b) \(v(r) = 3r (\pi r^2) \)
(c) \(f(r) = \frac{\pi r^2}{3r(\pi r^2)} \)
(d) \(\frac{1}{3r} \)
(e) rational function
(f) all real numbers except \(0\)
(g) \(r > 0 \)

34) \(c(t) = \begin{cases}
0.53t & \text{if } t \leq 70 \\
0.74(t - 70) + 37.1 & \text{if } t > 70
\end{cases} \) which simplifies to \(c(t) = \begin{cases}
0.53t & \text{if } t \leq 70 \\
0.74t - 14.7 & \text{if } t > 70
\end{cases} \)

35) \(c(t) = \begin{cases}
\frac{d}{2} & \text{if } 10:30 \text{ A.M. } \leq t < 2:30 \text{ P.M.} \\
\frac{d}{2} - 1 & \text{if } 2:30 \text{ P.M. } \leq t < 4:30 \text{ P.M.} \\
d - 5 & \text{if } 4:30 \text{ P.M. } \leq t < 6:00 \text{ P.M.} \\
\frac{d}{2} - 1 & \text{if } 6:00 \text{ P.M. } \leq t < 8:00 \text{ P.M.} \\
d - 5 & \text{if } 8:00 \text{ P.M. } \leq t < 10:00 \text{ P.M.}
\end{cases} \)

36) \(f(x) = -[12(x - 2.5)] + 30 \)
37) \(f(x) = [60(x - 0.5)] + 2 \)
38) \(f(x) = -[20(x - 14)] + 280 \)
39) \(f(x) = [30(x - 8)] - 240 \)

40) \(\frac{25!}{6!19!} = 177,100 \)

41) \(\frac{50!}{5!45!} = 2,118,760 \)

2.3 Combinations of Functions

1) (a) \(x^2 + 2x + 1 \)
(b) 16
(c) \(x^2 - 2x - 1 \)
(d) \(2x^3 + x^2 \)
(e) 0
(f) \(\frac{t^4}{2t^2 + 1} \)
(g) \(4x^2 + 4x + 1 \)
(h) 9
(i) \(2x^2 + 1 \)
2) (a) \(x^2 - 2x + 1\)
(b) \(6x + 5 - x^2\)
(c) \(2x^3 - 5x^2 - 16x - 6\)
(d) \(\frac{2x + 3}{x^2 - 4x - 2}\)
(e) \(2x^2 - 8x - 1\)
(f) \(4x^2 + 4x - 5\)
(g) \(-7\)
(h) \(3\)
3) (a) \(2x^2 - 4x + 9\)
(b) \(-2x^2 + 2x + 1\)
(c) \(-3\)
(d) \(-2x^3 + 13x^2 - 19x + 20\)
(e) \(20\)
(f) \(\frac{5 - x}{2x^2 - 3x + 4}\)
(g) \(1 - 2x^2 + 3x\)
(h) \(2x^2 - 17x + 39\)
(i) \(24\)
4) (a) \(-1\) (b) \(-2\)
5) (a) \(6x - 1\) (b) \(6x + 7\)
6) (a) \(-11 - 2x^2\) (b) \(16 - 12x + 4x^2\)
7) \(-4x + 3\)
8) (a) \(\sqrt{x^3 + 9}\) (b) \(\left(\sqrt{x + 4}\right)^3 + 5\)
9) (a) \(\frac{1}{x + 2}\) (b) \(\frac{1}{x + 1} + 1 = \frac{x + 2}{x + 1}\)
10) \(4x - 3\)
11) \(f(x) = x^5, g(x) = 2x - 3\) (Other answers are possible.)
12) \(f(x) = \frac{x}{x + 1}, g(x) = x^2\) (Other answers are possible.)
13) \(f(x) = \sqrt[3]{x}, g(x) = x + 4\) (Other answers are possible.)
14) C
15) C
16) D
17) A
18) C
19) \(f(g(x)) = \frac{2x^3 + 1}{2x^3 - 7}\)
20) D
21) \(f(g(x)) = \sqrt[3]{3x^2 + 5}\)
22) (a) \(0\)
(b) \(-5\)
(c) \(32\)
(d) \(3\)
(e) \(1\)
23) (a) \(1 - 4x^2 - 12x\) (b) \(16x^2 - 20x + 4\)
24) (a) 1.141
 (b) 0.721
 (c) 0.19551
 (d) 4.433
25) \(f(x) = \sqrt{x} \); \(g(x) = 7 - x \)
26) \(f(x) = 3x^3 + 7x^2 + 8x + 11 \); \(g(x) = x - 1 \)
27) (a) \(-5\)
 (b) \(-3\)
 (c) \(-2\)
 (d) \(-4\)
28) (a) \(t(x) = 15x \)
 (b) \(r(x) = 18x \)
 (c) \((t + r)(x) = 33x\)
29) (a) \(l(x) = x + 4 \)
 (b) \(a(x) = (x + 4)(x + 2) \)
 (c) \(\frac{l}{a}(x) = \frac{1}{x + 2} \)
30) \(c(s(x)) = 3x + 12 \)
31) \(c(s(x)) = 2.4x + 50 \)
32) \(c(s(x)) = x + 2000 \)
33) Let the length of a side be represented by the function \(l(x) = x + 6 \) and the area of a square with sides of length \(x \) be represented by \(a(x) = x^2 \). Then \(t(x) = (x + 6)^2 = [l(x)]^2 = a(l(x)). \)
34) Let the length of a side of the cube be represented by the function \(l(x) = x - 4 \) and the volume of a cube with sides of length \(x \) be represented by the function \(f(x) = x^3 \). Then \(v(x) = (x - 4)^3 = [l(x)]^3 = f(l(x)). \)

2.4 Inverse Functions
1) \(f^{-1}(x) = \frac{1}{3}(x - 6) \)
2) \(f^{-1}(x) = \sqrt{x} + 2 \)
3) The function is one-to-one.
4) The function is not one-to-one.
5) The function is one-to-one.
6) The function is not one-to-one.
7) \(q = -2p + 1000 \)

2.5 Graphs in Rectangular Coordinates
1) (a) all nonnegative real numbers
 (b) all real numbers greater than or equal to 2
2) (a) 2
 (b) 2
 (c) 2
 (d) 2
 (e) all real numbers
 (f) all real numbers greater than or equal to 2
3) (a) and (b)
4) (3, 0), (-4, 0); (0, -12)
5) (0, 0), (± 2, 0); (0, 0)
6) \(\begin{cases} 1 \\ \frac{1}{2} \end{cases} \) \(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, -\frac{7}{2} \)
7) no \(x \)-intercept; (0, 2)
8) (± 5, 0); (0, ± 8)
9) (± 3, 0); (0, 3)
10) (± 2, 0); (0, -16)
11) (-2, 0), (5, 0); (0, -10)
12) (a) (b) \(\left(-\frac{1}{2}, 0 \right), (0,1) \)
(c) \(y \) is a function of \(x \)
(d) all real numbers
(e) all real numbers

13) (a) (b) \((-3, 0), (0, 6)\)
(c) all real numbers
(d) all real numbers

14) Intercepts: \((2, 0), (0, 0)\)

15) Intercepts: \((-1, 0), (0, 1)\)
16) Intercepts: \((-2, 0), (0, \sqrt{2})\)

17) Domain: all real numbers
 Range: \([-1, 2]\)

18) Domain: all nonnegative reals
 Range: all reals < 7

19) B
20) B
21) D
22) B

23) (a) \(-7, 1\)
 (b) 4
 (c) \(-4\)
 (d) \(-\infty < x \leq 4\)
 (e) all real numbers greater than or equal to \(-5\)

24) (a) none
 (b) does not exist
 (c) 0
 (d) all reals
 (e) all reals \geq 0

25) \((1, 0); (-5, 0)\) and \(\left(0, -\frac{5}{3}\right)\)

26) 1.65
27) \(-2.62, -0.38, 3\)
28) \(-2.24, -1, 2.24\)
29) minimum at \((2.57, -6.23)\)
maximum at \((0.56, 1.47)\)
30) \(y = -250x + 1500; x\)-intercept \((6, 0)\); \(y\)-intercept \((0, 1500)\)
31) \(y = -60x + 2300; x\)-intercept \(\left(\frac{381}{3}, 0\right)\); \(y\)-intercept \((0, 2300)\)
32) \(x = 9\); vertical line; \(x\)-intercept \((9, 0)\); no \(y\)-intercept
33) \(y = 4.25\); horizontal line; no \(x\)-intercept; \(y\)-intercept \((0, 4.25)\)
34) \(y = 10\); horizontal line; no \(x\)-intercept; \(y\)-intercept \((0, 10)\)
35)
2.6 Symmetry

1) origin
2) x-axis, y-axis, origin, $y = x$
3) y-axis
4) origin
5) x-axis
6) origin
7) y-axis
8) x-axis, y-axis, origin
9) x-intercept: $(\pm 1, 0)$; y-intercept: $(0, 1), (0, -9)$; symmetric about y-axis
10) x-intercept: $(\pm 2, 0)$; no y-intercept; symmetric about x-axis, y-axis, origin
11) (a) none
 (b) y-axis
 (c)

(d) y is a function of x
(e) all real numbers except 0
(f) all positive real numbers
12) (a) $(2, 0), (-2, 0), (0, -4)$
 (b) y-axis
 (c)

(d) all real numbers
(e) all real numbers greater than or equal to -4
13) C
14) B
15) symmetric about the x-axis, y-axis and origin
16) symmetric about the y-axis
17) (0, 0); symmetric about the origin
18) (0, 0); symmetric about the y axis

2.7 Translations and Reflections

1) ![Graph](image1)

2) C
3) B
4) shift 3 units to the left

5) ![Graph](image2)
20) Order: 1. Move 3 left
 2. Vertical Stretch by 2
 3. Move 5 down
 Or any order in which 2. is before 3.

21) Order: 1. Move 5 right
 2. Reflect about the x-axis
 3. Move 4 up
 Or any order in which 2. is before 3.